

PLUS+1TM

Development
Guidelines

Revision B

PLUS+1 TM
Development Guidelines

2 10106114 • Rev B • Jan 2007

Changes

Changes

Revision History
Revision date Page Change Author Remarks

22.10.2006 All Release Guidelines Team:

T. Waschkowski
T. Juul
K. Lorenscheit
J. Wandersee
P. Sundh
S. Niska
T. Braun

Revision A

18.01.2007 16 Do … on Buses reworked T. Waschkowski Rev A 0.1

22.01.2007 Many Rewording L. Culbert Rev A 0.2

30.01.2007 All Release C. Trende Rev. B

Preface

The Guidelines Team and many other people contributed to these Guidelines by
providing material, reviewing documents, editing documents as well as joining many
meetings and discussions. Thank you to everybody!

This document starts with its first edition. The project will continue and there will be
future opportunities and extensions. Please let us know your opinion.

Sauer-Danfoss welcomes suggestions for improving our documentation. If you have
suggestions for improving this document, please contact Sauer-Danfoss at
doc.eh.de.nms@sauer-danfoss.com.

© 2006 Sauer-Danfoss. All rights reserved.

Sauer-Danfoss accepts no responsibility for possible errors in catalogs, brochures and other printed
material. Sauer-Danfoss reserves the right to alter its products without prior notice. This also applies to
products already ordered provides that such alterations can be made without affecting agreed
specifications. All trademarks in this material are properties of the respective owners. Sauer-Danfoss, the
Sauer-Danfoss logotype, PLUS+1 and PLUS+1 logo are trademarks of the Sauer-Danfoss Group.

mailto:doc.eh.de.nms@sauer-danfoss.com

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 3

Contents

Prefix 5
Overview 6

Overview... 6
Software Design 7

General .. 7
Example of a System Block Diagram ... 7
Example of a Software Block Diagram .. 8
Example of a Complex Software Block Diagram... 8

Graphical Programming 9
General .. 9
Coding ... 9

Diligent Coding 10
Diligent Editing...10
Negative Examples..10
Positive Example ..11

Good Practices for Coding 12
General ..12

Easy Solutions 14
Example for an Easy Solution ..14
Example for Simplification in using Guidelines..15
Redundant Code..15

Coding Checklist 16
Checklist ..16

Do ..16
Avoid (do not)...16

From Textual to Graphical Programming Style 17
General ..17

Simplification by Using Sub Pages 18
Before ...18
After ..19

Page Levels 20
Page Levels...20

Top Level ..20
One Level Below ..21
Detail Levels...21

Page Design 22
Page Structure ..22

Signal Flow 23
Signal Flow View ..23
Confusing Flow...24
Position of Ports in a Page..25
Data Consistency ...25

Descriptions & Comments 26
Useful Comments ..26
Missing Descriptions ..27

Function Blocks 28
Function Block Top View...28
Function Block Lower Level ...28

Error Handling 29
Error Handling of Applications ...29
Flash Codes for Error Handling...29

Software Identification 31
Material Number..31
Application Screen ..31

Service Tool 32
Guide Service Outline ..32

PLUS+1 TM
Development Guidelines

4 10106114 • Rev B • Jan 2007

Contents

Structure on Diagnostic Navigator ... 32
Application Screen.. 32
Application Screen Example ... 33
System Information .. 34
System Screen Example 1... 34
System Screen Example 2... 34
System Screen Example 3... 35
Software Screen ... 36
Software Screen Example 1 ... 36
Software Screen Example 2 ... 36
Parameters Screen .. 37
Parameters Screen Example 1 .. 37
Parameters Screen Example 2 .. 37

General Application Programming Considerations 38
Execution Flow ... 38
Loop Time .. 38
Number of Sub Pages .. 38
Safety critical functions ... 38
Certified for Service .. 39
Certified for Maintenance .. 39
Parameters inside the Application.. 40
Startup Behavior Considerations... 40

Naming Variables 41
General .. 41
User-Defined Variable Names... 41

Prefix .. 41
Qualifier .. 41
Suffix .. 42

Prefixes and Suffixes... 42
Qualifier/Port Label Abbreviations ... 43
Suffix Abbreviations ... 44

Mapping Signals 45
General .. 45
Discrete Signals .. 45
Status Signals .. 45

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 5

Prefix

Prefix
The PLUS+1 GUIDE Tool is an easy to learn and easy to use development tool to
develop software for machinery control.

The GUIDE graphical programming language is a powerful and flexible programming
language designed for rapid programming as well as complex software
development.
The simplicity and speed of developing a system with GUIDE can hide the reality that
graphical programming with GUIDE can be complex in case of complex problems.

The language is, in fact, a complete programming language, suitable for handling the
biggest and most complex applications that engineers can realize on machines.

In particular, programmers creating networking applications for embedded control
systems cannot afford to introduce errors by misinterpretation of the specification.

A structured development design is crucial to ensure quality and reusability of the
code developed!

Many engineers are facing the challenge of building more and more complex
systems to keep up with the growing complexity of a changing specification. Small
and lean implementations are growing in functionality and complexity.

It is easy for the customer to specify that he has “just the small change.” “It’s only
software.”

A structured programming process is required to master the generic requirement for
state of the art technology and quality expectations of a supplier.

In reality, a structured process for developing code – in any software programming
language – is independent of the language or tool used.

This document outlines some common practices for following a structured
programming process and shows how GUIDE should be used in these situations.

PLUS+1 TM
Development Guidelines

6 10106114 • Rev B • Jan 2007

Overview

Overview
The purpose of this document is to promote consistency in PLUS+1 GUIDE™
applications and functions.

This document contains guidelines for:

1. General Software Design

2. General Graphical Coding

3. Coding Checklist

4. Page levels

5. Signal Flow

6. Descriptions and Comments

7. Application Structure

8. The naming of variables used in PLUS+1 GUIDE applications such as user-defined

wires, checkpoints, and sub-buses.

9. The mapping of discrete and status signals to data types.

10. The formatting of the names of Sauer-Danfoss functions that appear in the

Function tab.

11. The appearance of Sauer-Danfoss functions in the Function tab’s Preview pane.

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 7

Software Design

General
Software Design explains the software solution also to non-programmers.
A software design can be understood as a block diagram representation of a high
abstraction level.

Software Design is not only direct programming with GUIDE.
Software Design means to create a solution plan which achieves the best
compromise in regards to the total cost of ownership during the product life cycle.

It is crucial for safety, quality and success to develop software on which is easy to do
maintenance.

Mobile machinery exists for many years and so does the software for embedded
systems in mobile machinery.

This truly points out the large benefit of the effort spent in a well defined
specification. The specification should also be under version control, which can be
found inside the software design.

If there are still some doubts as to what a software design means, try to paint the
complete system with software on a piece of paper and consider how add-ons can be
planned as well. When the simplification of the system is also considered, the design
is on a good path. After that, make it nice looking with the help of a drawing tool (E.g.
Visio, GUIDE).

Note: “Think about what you want to do before you do it.”

Example of a System Block Diagram
This picture shows an example block diagram of a system.

Figure 001

PLUS+1 TM
Development Guidelines

8 10106114 • Rev B • Jan 2007

Software Design

General (continued)
Example of a Software Block Diagram

 Figure 002

The focus here is on the structure and modules. If this is well understood, further
thoughts can go into the software details.

Example of a Complex Software Block Diagram
This example shows a larger diagram; the details are intentionally ambiguous in order
to focus on the logic of the blocks.

Figure 003

It is recommended dividing bigger problems into smaller ones. For example, the gray
box above includes a logical control. Lines can be wiped out and only one box can
represent the control instead of the 7 boxes shown in the diagram.

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 9

Graphical Programming

General
Many publications have been made about graphical software implementation.
The general idea is that one can be more efficient with graphical implementations. To
achieve this statement, a specific discipline is required.

Coding
Coding is a method to implement the specification. Coding itself is not a software
design. Coding is an implementation of a software design.

The success of software solutions compared to hardware solutions is in the area of
the implementation flexibility. The software can be easily changed. Many different
solutions can be implemented in many different ways.

Many different coding implementations can be delivered. It should be the goal of
every SW engineer or developer to create code in the same style.

This document tries to bring good practices to a broader public.

PLUS+1 TM
Development Guidelines

10 10106114 • Rev B • Jan 2007

Diligent Coding

Diligent Editing
Keep your source code clean. This chapter begins with an example.

Negative Examples
The drawing space of GUIDE is free format, but you should try to avoid these types of
drawings:

Here, the Blocks are placed First and the Lines have Steps:

Figure 004

After Aligning the Blocks, the Wires look like this:

Figure 005

Wire runs over a Block

Figure 006

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 11

Diligent Coding

Negative Examples (continued)
What looks ugly is not recommend:

Phantom Wiring

Figure 007

Incorrect Order: Inputs should be on the left Side; outputs should be on the right
Side. (The output gets its input one loop time too late).

Figure 008

Positive Example

And finally: This is the correct way to do it.

It is better to complete the Step and Align the Wires again.

Figure 009

PLUS+1 TM
Development Guidelines

12 10106114 • Rev B • Jan 2007

Good Practices for Coding

General

 Figure 048

Except for the exceptions described below, try to make all routes either vertical or
horizontal.

 Figure 042

Avoid tangled routing. Tangled routing makes it difficult to understand and update
an application.

 Figure 043

Checkpoints, being part of the application, should be connected as any other symbol.
If using checkpoints only for debugging, place them outside of the page border.
Consequently you will get a warning which allows you to find these points very easily.

 Figure 044

For legibility, route buses and wires at least one grid away from pins before changing
the routing direction.

 Figure 045

Align all application elements on the 2.5 mm x 2.5 mm grid.
For legibility, keep a one horizontal grid distance between components and page
pins.

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 13

Good Practices for Coding

General (continued)

 Good Bad Figure 051

For legibility, separate connections to a route, as shown in the “Good” example.
When zoomed out, connections made to a single point, as shown in the “Bad”
example, look like routes crossing.

 Figure 046

Keep all application elements inside the thin light blue line that defines the boundary
of the printable page. Elements placed outside this boundary will cause compilation
warnings. (The warning was implemented to help avoid someone putting all symbols
on one page.)

 Figure 047

Try to use buses to reduce the number of wire ports on a page.

PLUS+1 TM
Development Guidelines

14 10106114 • Rev B • Jan 2007

Easy Solutions

Example for an Easy Solution
This example demonstrates the advantage of simplifying an implementation.

Figure 018

Function:
The scaling of a value with upper and lower limits for the input is shown in figure 018.
The Outputs are limited in this example to “MaxSpinTol” and “0”.
Software Code Reviews are recommended and rethinking the source code comes up
with: If “WheelSpeed” is bigger than “MinSpeed”, then (not) the output is set to zero?
Using the inverse logic is no problem for experienced programmers, but it is much
more difficult for others to understand.

Figure 019

In the revised example shown in figure 019 above, the functionality is much easier to
understand. “A WheelSpeed” is normalized between minimum and maximum, the
output is between 0 and MaxSpdTol. The code quality is better by eliminating
crossing lines, using only two symbols instead of seven and using nine green lines
instead of twenty one.

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 15

Easy Solutions

Example for Simplification in using Guidelines
Simplification is very important for code quality and this Guideline will help.
Here is another example:

Figure 020

The developer of the example above did not follow the Guidelines: more lines are
crossed than needed and the same function quickly becomes complicated and
difficult to review.

Figure 021

One function of the example above is: If a delay is at max, a report is generated.

Redundant Code

 Figure 022

Avoid redundant code. This code is doing nothing other than keeping True as True
and such logic should be avoided.

PLUS+1 TM
Development Guidelines

16 10106114 • Rev B • Jan 2007

Coding Checklist

Checklist
Do
1. Flow data from left to right. Wires enter from the left and exit to the right.
2. Align and distribute functions, terminals, and constants.
3. Version control of important functions should be implemented.
4. Consider the reusability of the implementation.
5. Make sure the program can deal with error conditions and invalid values.
6. Rely on the correctness of a library function block; therefore not every output

needs to be double checked.
7. Arrange the logical solution on a dedicated area.

Centralize topics and information within the dedicated page.
8. Review the code for efficiency and accuracy.
9. Use the error signals of the function blocks.
10. Use a bus for “defines” (Type definition, compare enumerate, transition into

Boolean with name) when there is repeated use.
11. Use the bus only for dedicated meaning.
12. Use a separate bus for parameters.
13. Use a separate bus for working variables.
14. Do not mix working variables and parameters.
15. Use a unidirectional bus for working variables.
16. Bi-directional use is only acceptable for parameters.
17. Add comments liberally to aid understanding.
18. Use text comments to indicate the purpose of various parts of the page.
19. Document the implementation.
20. Explain abbreviations (standard list in GUIDE).
21. Use a glossary when possible.
22. Use variable sizes applicable to the requirement.
23. Names and variable names should be clear in meaning and function.
24. Names should be defined with consistent logic.
25. Notation of naming should be followed strictly.
26. Meaningful page names reflect their function.
27. Graphic implemented to illustrate the function of the page.
28. Use error handling consolidated in a separate block.

Avoid (do not)
1. Avoid placing blocks and pages on top of wires.
2. Avoid creating pages with too much code on one page.
3. Do not duplicate code.
4. Avoid redundant code.
5. Do not use short names when not needed. Longer names are more easily

understood.

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 17

From Textual to Graphical Programming Style

General
Textual programming can have a little different way of thinking. Here is an example
from the C-Programming world to show the difference:

The example shows a graphical implementation of how to consider an
“If / else statement”:

If (In > 0)
{
 Dir = 1; /* Right */
}
else if (In < 0)
{
 Dir = -1; /* Left */
}
else
{
 Dir = 0; /* Neutral */
}

Figure 023

Note: The implementation above does not exactly reproduce the c-code. The focus is
for the c-code and the GUIDE code to have the same functionality.

PLUS+1 TM
Development Guidelines

18 10106114 • Rev B • Jan 2007

Simplification by Using Sub Pages

Before

Figure 024

General statements about the example:
1. A single instance of a port (same name) gives quick visual information about the

inputs/outputs.
Only ports present on the top view should be used since a port indicates that it is
an input/output to the page.

2. A state should be a bus containing the different states. With Boolean states true
or false, this makes it possible to use the state directly. This makes the code more
readable.

3. Place the input ports to the left and the output ports to the right. This makes the
code more readable.

Simplification on this page:
The red ellipse on the screen shot is the focus for this example:
According to the Guidelines defined earlier, there is too much logic on one page view.
Please refer to the next figure, where the simplification is discussed.

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 19

Simplification by Using Sub Pages

After

Figure 025

The simplification is done by moving the details into a sub-page.

This is the Content of the Sub-Page:

 Figure 026

PLUS+1 TM
Development Guidelines

20 10106114 • Rev B • Jan 2007

Page Levels

Page Levels
When creating an application, the nesting levels of the implementation should be
consistent.

Top Level

This is Level 1

Figure 017

Figure 027

The top level is the top level of the template.

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 21

Page Levels

Page Levels (continued)
One Level Below

This is Level 2.

Figure 028

One level below, the application overview should be visible.

Detail Levels

This Example shows Level 3.

Figure 029

More detailed implementations should be done in level 3.
If there are too many requirements to address at this level, a deeper level can be
implemented. This would be level 4.

The deeper the level, the more detailed is the functionality.

PLUS+1 TM
Development Guidelines

22 10106114 • Rev B • Jan 2007

Page Design

Page Structure
The structure of a page is crucial for the design.

These are the general recommendations:

• Organize your page structure in a way that reflects the logic of your
application.

• Give your page a meaningful name that reflects its function.
• When possible, create a graphic to illustrate the function of the page.
• Use text comments to indicate the purpose of various parts of the page.
• If an experienced PLUS+1 programmer can understand the purpose and

function of the page within ten seconds, you have created a successful page
design.

• If non-experienced programmers can understand the purpose as well, you
have implemented a good design!

• Carry hardware signals to and from the pages that you place within the
Application page. Use the buses connected to the Hardware Inputs and
Hardware Outputs supplied with the template.

• Divide functions into pages to make them easier to understand.
• Do not use hardware connectors to carry signals to and from pages. Using

hardware connectors within pages makes applications more hardware-
specific and less portable.

• Avoid “pass-through” signals when possible. This type of signal passes
through a page but is not used within the page or its sub-pages. Creating
entry and exit points for these signals clutters the layout of the page.

• Avoid creating multiple entry and exit points in a page for the same signal or
bus. Use care when rotating functions and components. Rotation may cause
problems in the execution order.

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 23

Signal Flow

Signal Flow View

Figure 031

It makes absolute sense to consider the logic of your signal flow.

This example shows a top view where you can clearly understand the signal flow of
your software. The signal entries are on the left side, the signal flow remains straight
forward from left to right, crossing is avoided by using sub pages, and the
implementation is complete on the page.

Buses are used with clear structure. Indeed, this is not always possible.

Each block is designed with a graphic which explains the functionality at just a
glance. This illustrates one of the main advantages of graphical programming - it
guides you through the code and tells you something about the software design.

Specifically during a code review, a person who has not seen the code before, will be
able to understand more quickly what the software is supposed to do.

It is recommend to implement code in this way even if the total memory usage might
be higher.

PLUS+1 TM
Development Guidelines

24 10106114 • Rev B • Jan 2007

Signal Flow

Confusing Flow

Figure 032

This example shows the opposite of a clear implementation - the page is simply
confusing.

This style is sometimes referred to as green spaghetti and should be avoided.

Specifically, “new” PLUS+1 programmers will have difficulties in understanding the
logic of the implementation just by looking at the “picture”.

It may take a long time to understand the functionality of a page. It may take even
more time to implement a small specification change.

Handing over software to a colleague will definitely take a longer time than in the
first example.

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 25

Signal Flow

Position of Ports in a Page

Inputs should be on the left Side, outputs on the right Side.

Figure 033

The overview of a page sometimes needs a compromise. A port sometimes needs to
be in the middle of the page.

Data Consistency
The consistency of values must be equal. Mixing up physical dimensions is like
comparing apples and bananas.

Please add only current with current or AD converter digits if they have the same
scale.
Closed loop controls must operate with the correct scale. Please do not substitute the
scale by just using bigger parameter values.

Example: current controller –
It should be
Delta Current [mA] = Current Setpoint [mA] – Current Measure [mA]

And not
Delta Current [A] = Current Setpoint [mA] – Current Measure [Digits]

Please consider that closed control outputs are used in the same direction and
meaning as discussed for the variables above.
A closed loop output of RPM should be scaled into a current before being used in a
summantion for that current.

PLUS+1 TM
Development Guidelines

26 10106114 • Rev B • Jan 2007

Descriptions & Comments

Useful Comments

Comments are helpful for Reviews and Maintenance

Figure 034

The comments are very helpful in this example. The two lines of text explain what
the logic is doing.

Combing comment number 2 with comment number 1 allows us to make the
following statement regarding the function:
“The input command is only passed through to the output if there are no FNR or
Pump faults AND the input command has been zero since the brake was released. A
subsequent brake command will set the output to zero.”

Comments in a Box can contain General Explanations.

Figure 035

This page has been cleaned up a bit now. What is different?

• A page comment has been added.
• The switch has been moved further to the right.
• The result of the “Brake” will be executed in the same loop instead of the

loop after as in the previous example.
• Although we have two crossing lines instead of one, the flow is clearer.

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 27

Descriptions & Comments

Missing Descriptions

Example Implementation That Doesn’t Conform to Guidelines

Figure 036

There is no description at all.

Missing descriptions of parameters and the numbers used for calculations caused
confusion during reviews and software maintenance.

Using a number like “2040” in this example is easy to type, but there should be a
name explaining the meaning of this number, specifically if you want to reuse it in
other pages.
Using just the number makes it difficult to understand the objective of an
implementation.
A better implementation is to use a define Bus where the number 2040 is linked to a
name e.g. “MaxGearRatio”.

Possible improvements:

• Add page name as a comment
• Add a short description of the page functionality
• Add references to external documentation, definitions and requirements
• Explain numbers if they are used

Please refer to the chapter on variable naming convention. This is a very important
factor for the clarity of an implementation.

PLUS+1 TM
Development Guidelines

28 10106114 • Rev B • Jan 2007

Function Blocks

Function Block Top View

Function Block Top View - Level 1

 Figure 037

Function Blocks should be designed with a clear structure as well. An example
function block is shown above.
The design is more or less self-explaining. The symbol is lean, but shows the block
function. The title is clear and a version number is included. (0.00 = draft).

Underscores are not used in variable names, the graph is yellow, the page name is
red, and any added text should be yellow.

Function Block Lower Level

Function detail view - Level 2

 Figure 038

The level below explains the details of a function block.

Yellow test describes the possible configurations of the block. In the ideal case, a user
manual of the function block is not needed if the description is complete.

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 29

Error Handling

Error Handling of Applications
Use a standardized P1D outline logic.

Flash Codes for Error Handling

 Figure 039

Use a standard error code function block to automatically follow the global standard
for flash codes.

Figure 040

This is the inner view. Errors are shown using the red LED. Status is shown using the
yellow LED.

PLUS+1 TM
Development Guidelines

30 10106114 • Rev B • Jan 2007

Error Handling

Flash Codes for Error Handling (continued)

 Figure 041

The flash code follows the logic shown above.

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 31

Software Identification

Information about the Software is needed to identify the software version and the
Status of the software.

Material Number
Material Numbers (also known as Part Numbers) are used to define a unique system.

Figure 60

Application Screen
An application screen on the service tool is the first screen visible when connecting to
an application and loading its P1D file. General information like part number should
be displayed here.

Place the following information:

• Ident Number
• Software Version
• Parameter Version
• Release Status

Figure 61

PLUS+1 TM
Development Guidelines

32 10106114 • Rev B • Jan 2007

Service Tool

Guide Service Outline
Service tool standardization is important for service and maintenance. The cost
savings are immense if an organization with engineering, service and customer
support does not need to retrain personnel for each new application development. If
the structure and the outline of available screens follows a consistent style and
guidelines, those screens are mostly self explaining.

Recommendation - use a standardized outline and logic for the screens.

Structure on Diagnostic Navigator

Service Tool Screens should be arranged in this structure:

Application Screen
An application screen is the first screen visible when connecting to an application. At
this position basic and general information like part number should be displayed.

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 33

Service Tool

Application Screen Example

 Figure 042

PLUS+1 TM
Development Guidelines

34 10106114 • Rev B • Jan 2007

Service Tool

System Information
After the application Info the next screen is the System Screen.

System Screen Example 1

 Figure 043

System Screen Example 2

 Figure 044

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 35

Service Tool

System Screen Example 3

The appearance of the screens should be consistent for each application.

It is important is to keep the corporate Identity and information compatible.

PLUS+1 TM
Development Guidelines

36 10106114 • Rev B • Jan 2007

Service Tool

Software Screen
A software screen is the main view into the application. The general logic of the
application should be displayed here. It is good style if the “software design” can be
recognized on this page.

Software Screen Example 1

Figure 045

Software Screen Example 2

Figure 046

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 37

Service Tool

Parameters Screen
A parameter screen is used to modify values that are used inside of applications.
For example, if the time used in a ramp function needs to be adjustable, these values
can be accessible via parameters.
The clarity of the service tool page has a large influence on the fault tolerance of a
system. If the service tool page is clear, there will be less faulty adjustments done by
the user.

Parameters Screen Example 1

Figure 047

Parameters Screen Example 2

Figure 048

PLUS+1 TM
Development Guidelines

38 10106114 • Rev B • Jan 2007

General Application Programming Considerations

Execution Flow
It is important to understand the order of execution in a GUIDE application. If one
calculation is based on the result of another, the result should be ready before it is
used.

The execution flow is from top left of the page to the bottom left of the page,
continuing with the next top pixel and moving right until the last one (referred to as
pixel scanning).

The blue arrows in the pictures above show the execution order.

Loop Time
Check if the loop time is too long.

The PLUS+1 software kernel automatically checks the runtime of the active task (loop
time). If the actual loop time exceeds the application setting, a longer run time is set
by the kernel.
Ensure the task time has the correct setting.
The correct loop time is set in milliseconds. If the run time is the same as the set time,
then add one millisecond to the set time to give some headroom.

Number of Sub Pages
Number of sub pages:
There is no limit. Use as many levels as the best solution requires.

Safety critical functions
There is no ISO 61508 implementation defined. Use a system FMEA (Failure Mode
Effects Analysis) and review with the customer.

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 39

General Application Programming Considerations

Certified for Service
A code review and design review can result in a process to certify software for
Service. In this case Sauer-Danfoss can do field service on machines equipped with
Sauer-Danfoss software (cheaper).

Certified for Maintenance
A code review and design review can result in a process to certify software for
Maintenance. In this case Sauer-Danfoss can develop changes or modifications to
customer released software (cheaper).

PLUS+1 TM
Development Guidelines

40 10106114 • Rev B • Jan 2007

General Application Programming Considerations

Parameters inside the Application
Application software should verify the status of the parameters being used.
If, for example, after downloading in production, no parameter set is valid, an
applicable default parameter set should be loaded and stored. This will ensure the
correct functionality of the application.

The application needs to ensure that the behavior of a machine is safe even without
adjusted parameters.

Startup Behavior Considerations
Application software normally is specified for a running system. Often the
requirements are different in the scenario where a system is being started.

An engine might be already running and the embedded control is starting. It would
be an unexpected behavior if the machine immediately moves ahead. These
situations are addressed with specific functions for specific cases.
For example, a START Protection system can prevent movement during system
startup.

The application needs to ensure that the behavior of a machine is safe even during
system start.

It is recommended that the developer fully consider the startup sequence of the
controller. For example:

• Is the Digital Output to battery plus or to ground?
• Is the initialization of variables consistent with the connection diagram?

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 41

Naming Variables

General
Variable names can explain many details about the functionality of the software.
The following pictures will explain how variable names are structured.

 Figure 049

Variables include user-defined signal wires, sub-buses, checkpoints, and EEPROM
aliases. These guidelines do not apply to variables that are part of the application
templates.

User-Defined Variable Names
Variables consist of a prefix, qualifier, and suffix:

Prefix
Prefix - Identifies the variable type, such as Boolean (B) or checkpoint (CP).
1. The prefix helps identify variable types in sorted lists.
2. Not all variables have enough space for a prefix.
3. Capitalize all prefixes.
4. Separate prefixes from the qualifier with an underscore (_).

Qualifier
Qualifier - Describes how the application uses the variable.
1. Use mixed case formatting to make the qualifier easier to read. Capitalize only the

first letter of each word or abbreviation.
2. Concatenate (run together) abbreviated words used in the qualifier.
3. Avoid letter combinations, such as lH and lD, that are hard to read on the screen:
4. Use descriptions that indicate the true state for Boolean signals, such as SetDefAll

(Set Defaults All), Fnd (Found), and Pass.
Preferred
JoyHiCal, SetDefAll
Avoid
CalHiJoy, SetAllDef

5. Limit new qualifier abbreviations to no more than four letters.

PLUS+1 TM
Development Guidelines

42 10106114 • Rev B • Jan 2007

Naming Variables

User-Defined Variable Names (continued)
Suffix
Suffix— Identifies the variable units.
1. Separate the suffix from the qualifier with an underscore (_).
2. Not all variables have enough space for a suffix.

Signal names can be up to 15 characters in length. Checkpoint and alias names can
be up to 100 characters in length. Keep these names short—diagnostic screens may
not be able to display all the characters in long names.

Identify sub-buses with a qualifier. These labels do not have prefixes or suffixes.

Prefixes and Suffixes
The following table lists recommended prefixes and suffixes for PLUS+1 variables.

Prefixes and Suffixes

Type Pin Name Prefix Suffix Example

DIGITAL_INPUTS

 DIGIN B —— B_SetDefAll

 PINSTATUS S ——

ANALOG_INPUTS

 ANIN AD ——

 VOLT V mV V_PotSnsr_mV

 OHM O ohm

 PINSTATUS S ——

MULTIFUNC_INPUTS

 DIGIN B ——

 ANIN AD ——

 VOLT V mV

 FREQ F Hz

 PINSTATUS S ——

OUTPUT_STATUS

 ACTPWM FP pct2*

 FEEDBVALUE FV pct1†

 PINSTATUS FS ——

 ACTFREQ FF Hz

PARAMETER

 —— —— Units (where
applicable)

HiCal_mV

CHECKPOINT

 —— CP and
variable
type

Units, connector,
and pin location
(where
applicable)

CP_B_InRngHiCal__c2p2

EE

 ALIAS EE Units (where
applicable)

EE_MidJoyCal_mV

Subbus —— —— —— Pot1Para

* 10,000 = 100% (100 x 10 x 10)

† 1000 = 100 % (100 x 10)

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 43

Naming Variables

Qualifier/Port Label Abbreviations
The following table lists qualifier abbreviations for use in PLUS+1 variables.
Also use these abbreviations when labeling ports on a function.
Qualifier/Port Label Abbreviations

Qualifier Abbreviation Comment Qualifier Abbreviation Comment

2 wheel 2Whl Loop Time LpTm

4 wheel 4Whl Low Lo

Accelerate Acel Maximum Max

Alarm Alrm Middle, Mid Mid

All All Minimum Min

Angle Ang Negative Neg

Average Avg Neutral Neut

Buzzer Buzz Not Not

Bypass Bpas Number Nmbr

Calibrate Cal Operator Op

Clockwise Cw CW* Output Out

Command Cmd Pack Pck

Control, Controller Ctrl Parameters Para

Coordinate Cord Pass Pass

Counterclockwise Ccw CCW* Passive Pasv

Deadband Dbnd Point Pt

Decelerate Dcel Positive Pos

Decrease, Decrement Dec Potentiometer Pot

Default Def Presence Prs

Diameter Dia Propel Prpl

Digital Dig Pulse Puls

Direction Dir Pulse pickup unit Ppu PPU*

Displacement Disp Pulse width mod. n Pwm PWM*

Done Done Range Rnge

Down Dn Read Rd

Drive Drv Reset Rst

Enable Enbl Reverse Rvs

Equal Eq Revolution Rev

Error Err Right R

Fail Fail Right front Rf RF*

Fault Flt Right rear Rr RR*

Feedback Fdbk Sample Smpl

Forward Fwd Select Slct

Found Fnd Sensor Snsr

Four wheel 4Whl Set Set

Frequency Freq Setpoint Stpt

Ground Gnd Soft Sft

Guard Grd Solenoid Sol

Handle Hndl Speed Spd

High Hi Start Strt

Hold Hld Status Stat

Horn Hrn Steer, Steering Str

Hysteresis Hyst Stop Stop

Increase, Increment Inc Sweep Swp

Initialize Init Switch Sw

Input* In Time Tm

Left L Value Val

Left front Lf LF* Wheel Whl

Left rear Lr LR* Width Wdth

Length Lgth Work Wrk

Light Emitting Diode LED Write Wr

Loop Lp

PLUS+1 TM
Development Guidelines

44 10106114 • Rev B • Jan 2007

Naming Variables

*Use all caps when labeling ports on a function.

Suffix Abbreviations
The following table lists suffix unit abbreviations. Use these abbreviations when your
variable has a suffix.

Unit Abbreviations

Item Abbreviation Item Abbreviation

100 = 100 % pct kilometers per hour kph

1000 = 100 % pct1* meter m

10,000 = 100 % pct2* miles per hour mph

ampere A millimeter mm

centimeter cm minute (time) min

connector c ohm ohm

degree Deg pascal Pa

degree Celsius C pin p

degree Fahrenheit F pounds per square inch psi

foot ft radian rad

hertz Hz revolutions per minute rpm

hour h second (time) s

inch in volt V

kilogram kg watt W

* 1000 = 100 % (100 x 10)

† 10,000 = 100% (100 x 10 x 10)

PLUS+1 TM
Development Guidelines

 10106114 • Rev B • Jan 2007 45

Mapping Signals

General
This section contains guidelines for mapping discrete and status signals.
These signals indicate digital states and directions.

Discrete Signals
Discrete Signals

Value Data Type Value Meaning Comments

0 Low/Off Digital input BOOL

1 High/On
Direct mapping from BOOL type

0 Low/Off Digital output BOOL

1 High/On
Direct mapping from BOOL type

0 Neutral

+1 Up, right, forward,
extend

-1 Down, left, reverse,
retract

2 – 32767

Direction S16

-32768 – -3
Unassigned

Status Signals
These signals indicate status values.

State Signals

Value Data Type Value Meaning Comments

Calibrate S8 0 Auto calibration disabled Normal operation

 1 Auto calibration enabled

 2 Apply default values

 3 Force to uncalibrated
values

Maximum and minimum values
are both 0

Fault S16 0 No fault

 1 Input value too low

 2 Input value too high

 3 Input value at 0

 4 Input value at maximum

Status U16 0 No status

 1 Not calibrated

 2 In calibration

 3 Corrupt parameters

 4–100 Reserved for system-wide
status

 101–
65535

Status specific to the
application

Errors U16 0 No error

 1 Value too low

 2 Value too high

 3 Value at zero

 4 Value at maximum

 5–100 Reserved for system-wide
errors

 101–
65535

Errors specific to the
application

Our Products

Hydrostatic transmissions

Hydraulic power steering

Electro-hydraulic power steering

Electric power steering

Closed and open circuit axial
piston pumps and motors

Gear pumps and motors

Bent axis motors

Orbital motors

Transit mixer drives

Planetary compact gears

Proportional valves

Directional spool valves

Cartridge valves

Hydraulic integrated circuits

Hydrostatic transaxles

Integrated systems

Fan drive systems

Electrohydraulics

Microcontrollers and software

Electric motors and inverters

Joystick and control handles

Displays

Sensors

10106114 • Rev. B • Jan 2007

Sauer-Danfoss Hydraulic Power Systems
- Market Leaders Worldwide

Sauer-Danfoss is a comprehensive supplier providing complete
systems to the global mobile market.

Sauer-Danfoss serves markets such as agriculture, construction,
road building, material handling, municipal, forestry, turf care,
and many others.

We offer our customers optimum solutions for their needs and
develop new products and systems in close cooperation and
partnership with them.

Sauer-Danfoss specializes in integrating a full range of system
components to provide vehicle designers with the most
advanced total system design.

Sauer-Danfoss provides comprehensive worldwide service for its
products through an extensive network of Authorized Service
Centers strategically located in all parts of the world.

Local address:

Sauer-Danfoss (US) Company Sauer-Danfoss ApS
3500 Annapolis Lane North DK-6430 Nordborg, Denmark
Minneapolis, NM 55447, USA Phone: +45 7488 4444
Phone: +1 763 509 2084 Fax: +45 7488 4400
Fax: +1 763 559 0108

Sauer-Danfoss GmbH & Co. OHG Sauer-Danfoss-Daikin LTD
Postfach 2460, D-24531 Neumünster Sannomiya Grad Bldg. 8F
Krokamp 35, D-24539 Neumünster 2-2-21 Isogami-dori, Chuo-ku
Phone: +49 4321 871 0 Kobe, Hyogo 651-0086, Japan
Fax: +49 4321 871 284 Phone: +81 78 231 5001
 Fax: +81 78 231 5004

www.sauer-danfoss.com

	Prefix
	
	Overview
	Overview

	Software Design
	General
	Example of a System Block Diagram
	Example of a Software Block Diagram
	Example of a Complex Software Block Diagram

	Graphical Programming
	General
	Coding

	Diligent Coding
	Diligent Editing
	Negative Examples
	Positive Example

	Good Practices for Coding
	General

	Easy Solutions
	Example for an Easy Solution
	Example for Simplification in using Guidelines
	Redundant Code

	Coding Checklist
	Checklist
	Do
	Avoid (do not)

	From Textual to Graphical Programming Style
	General

	Simplification by Using Sub Pages
	Before
	After

	Page Levels
	Page Levels
	Top Level
	One Level Below
	Detail Levels

	Page Design
	Page Structure

	Signal Flow
	Signal Flow View
	Confusing Flow
	Position of Ports in a Page
	Data Consistency

	Descriptions & Comments
	Useful Comments
	Missing Descriptions

	Function Blocks
	Function Block Top View
	Function Block Lower Level

	Error Handling
	Error Handling of Applications
	Flash Codes for Error Handling

	Software Identification
	Material Number
	Application Screen

	Service Tool
	Guide Service Outline
	Structure on Diagnostic Navigator
	Application Screen
	Application Screen Example
	System Information
	System Screen Example 1
	System Screen Example 2
	System Screen Example 3
	Software Screen
	Software Screen Example 1
	Software Screen Example 2
	Parameters Screen
	Parameters Screen Example 1
	Parameters Screen Example 2

	General Application Programming Considerations
	Execution Flow
	Loop Time
	Number of Sub Pages
	Safety critical functions
	Certified for Service
	Certified for Maintenance
	Parameters inside the Application
	Startup Behavior Considerations

	Naming Variables
	General
	User-Defined Variable Names
	Prefix
	Qualifier
	Suffix

	Prefixes and Suffixes
	Qualifier/Port Label Abbreviations
	Suffix Abbreviations

	Mapping Signals
	General
	Discrete Signals
	Status Signals

